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Abstract. Some recent results have shown that in addition to its role in quantum mechanics,
the Schr̈odinger free particle equation in(1 + 1) dimensions describes second-order effects in
ensembles of lattice random walks. This alternative classical context for Schrödinger’s equation
is independent of its role in quantum mechanics. In this paper we extend this result to include
the case of Schrödinger’s equation in(2 + 1) dimensions for a particle in a smooth bounded
potential. The extension suggests that the new classical context of Schrödinger’s equation is
quite general.

0. Introduction

It would be difficult to overstate the importance of Schrodinger’s equation in our current
understanding of physics and chemistry. However, inspite of a long history of great
success in the precise prediction of microscopic phenomena, the equation itself remains
an enigma. This is largely due to the historical association of the equation with quantum
mechanics. Within quantum mechanics, ‘wavefunction’ solutions of Schrödinger’s equation
are mathematical objects which have no known physical counterpart. Wavefunctions
facilitate the calculation of ‘observables’ but are not themselves observable.

The absence of an acceptable microscopic model for quantum mechanics has given rise
to a division within physics centred around the original Bohr–Einstein debate. In that debate
Einstein maintained that without a microscopic model, quantum mechanics was incomplete.
Bohr, on the other hand, argued that quantum mechanics was complete as a theory and that
pursuit of a more fundamental description was futile. The debate, which remains unresolved,
moved from the arena of thought experiments into the realm of real experiments due partly
to the work of J S Bell [1]. A very interesting article containing Bell’s final views on the
subject can be found in [2].

There has been a recent revival of interest in the interpretation of quantum mechanics
within the physics community. The volumes by El Naschie, Rossler and Prigogine [3]
provide some examples of very recent work in the field. The books by Nelson [4]
and Nagasawa [5] describe Stochastic approaches to quantum mechanics and Nottale [6]
considers a fractal spacetime approach. A summary of Euclidean quantum mechanics may
be found in the recent article by Zambrini [7] and the book by Holland [8] describes the
current state of the de Broglie–Bohm formulation. Direct antecedents of this work can be
found in [9–17].

For all practical purposes the uncertainty about interpretations of quantum mechanics
can be (and generally is) completely ignored by those who use quantum mechanics to
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describe nature. In practice one just solves Schrödinger’s equation and uses the solution to
calculate relevant observables. There is then a temptation to conclude that the Schrödinger
equationis quantum mechanics, and that as a result, Schrödinger’s equation itself has no
microscopic model. Part of the purpose of this paper is to illustrate the fact that this latter
conclusion is incorrect. That is, we shall show that Schrödinger’s equation, which in the
quantum context represents a particle in a smooth bounded potential in(2+ 1) dimensions,
also has a microscopic model completely within the classical mechanics of random walks.
In the new context the solutions of Schrödinger’s equation represent the continuum limit of
a property of ensembles of Brownian particles.

The difficulty with deriving Schr̈odinger’s equation from classical physics is that
classical probability densities obey dissipative dynamics, whereas the ‘probability amplitude’
of Schr̈odinger’s equation does not. Crossing the bridge between these two qualitatively
different behaviours is mathematically easy and may be accomplished by a formal analytic
continuation (e.g.t → it takes the diffusion equation to the free particle Schrödinger
equation or the Wiener Integral to the Path integral [18]). Physically, however, the analytic
continuation is difficult to interpret (e.g. real time versus imaginary time) and microscopic
models which underlie classical probabilistic systems are qualitatively changed by the
analytic continuation (e.g. Brownian motion versus reversible diffusions).

In this article we take a rather different track than is usual. The underlying microscopic
model we use is a simple random walk model whose probabilistic description is completely
classical. The dynamics are dissipative and particle densities obey the diffusion equation.
We do not change these dynamics in order to ‘see’ Schrödinger’s equation, we just
examine the dynamics more closely than is usual. Schrödinger’s equation then appears as a
description of second-order effects in ensembles of these diffusing particles. The reversible
dynamics associated with Schrödinger’s equation reflect an intrinsic symmetry, inherent in
lattice random walks, which is not seen at the level of particle density in the continuum
limit. In this context the real and imaginary parts of the solutions of Schrödinger’s equation
are observable properties ofensemblesof random walks in the same way that solutions
of the diffusion equation are real observable properties of such ensembles. In this sense
we have a classical microscopic model of Schrödinger’s equation which is as direct as the
random walk model of diffusion. There is then no difficulty in interpreting solutions of
Schr̈odinger’s equation in this context. However, the price paid for the objective reality of
the underlying microscopic model is that it cannot correspond directly to individual particles
of nature. None of the individual particles in our formulation have any of the aspects of
waveparticle duality which would be required to imitate the particles of nature. Interference
effects are seen only at the level of ensembles of particles, not at a single particle level.

The model we consider is a generalization of models which have been studied in(1+1)
dimensions [14, 17]. In these models, we can obtain both Schrödinger’s equation and the
diffusion equation directly within classical statistical mechanics, by projection. Figure 1
represents the situation schematically. Random walks on a lattice provide a microscopic
model for the diffusion equation and the usual route to Schrödinger’s equation then involves
a FAC (e.g.t → it). This provides an equation for wavefunctions without identifying what
objective properties of the random walk model, if any, they really describe. The new
route from random walks to the Schrödinger equation involves only a projection so that the
solutions in this case have direct counterparts in ensembles of random walks.

In this work we extend the picture of figure 1 to include(2 + 1) dimensions and a
smooth bounded external field. In section 1 we consider the(1 + 1)-dimensional case in
which walks take place in an external field, following [16]. Section 2 extends this to(2+1)
dimensions.
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Figure 1. The relation between the lattice random walk model of Brownian motion, the diffusion
equation, and Schrödinger’s equation. Until recently the only route to Schrödinger’s equation
involved a FAC. This FAC was a formal step which removed the random walk model as a truly
microscopic model of the Schrödinger equation. The new route to the Schrödinger equation is a
projection in which there is no formal step. Taking into account this new route, both equations
have the same microscopic model and are simply different projections of the same system.

Table 1.

State Direction Spin

1 Right 1
2 Left 1
3 Right −1
4 Left −1

1. Walks in (1 + 1) dimensions

We consider discrete random walks on a space time lattice with lattice spacingδ andε in
x and t , respectively. We shall keep track of a particle’s history on the lattice by recording
its state at each time step. We shall distinguish four possible states. States one and three
correspond to right-moving particles and states two and four to left-moving particles. A
particle starting in state one changes to state two at the first direction reversal, state three
at the second reversal, state four at the third reversal and back to one at the fourth reversal.

As an alternative labelling of states we associate an Ising spin variableσ = ±1 with
each state. We say that states one and two have spinσ = +1 and states three and four have
spin σ = −1. This gives us a convenient means of distinguishing different states which
correspond to the same direction (see table 1).

Note here that the ‘state of a particle’ really refers to a state of its trajectory. We are
not adding any new property to the point particles by considering these four different states,
we are only recording more information about the trajectory than is usual.

Let pµ(mδ, sε)δ (µ = 1, 2, 3, 4) be the probability that a particle is in stateµ at the
spacetime pointx = mδ, t = sε (m = 0,±1,±2, . . . ; s = 0, 1, . . .). The difference
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equations for thepµ are then

p1(mδ, (s + 1)ε) = αp1((m− 1)δ, sε)+ βp4((m+ 1)δ, sε)

p2(mδ, (s + 1)ε) = αp2((m+ 1)δ, sε)+ βp1((m− 1)δ, sε)

p3(mδ, (s + 1)ε) = αp3((m− 1)δ, sε)+ βp2((m+ 1)δ, sε)

p4(mδ, (s + 1)ε) = αp4((m+ 1)δ, sε)+ βp3((m− 1)δ, sε)

(1)

whereα + β = 1. Here,α is the probability that a particle maintains its direction at the
next time step; whereas,β is the probability that a particle will change its direction at the
next time step. Equation (1) is the master equation for the ensemble of random walks. We
shall shortly letα vary according to an external field. We impose the condition

4∑
µ=1

+∞∑
m=−∞

pµ(mδ, sε)δ = 1 (2)

which establishes the fact that the probability that a particle is somewhere on the lattice at
a given time is 1.

The governing equations (1) have a straightforward interpretation. The first equation
in (1) implies that the probabilityp1δ that the particle leaves the node(mδ, (s + 1)ε) in
state 1 is equal to the sum of two proabilities:αp1δ—the probability that the particle leaves
the node((m − 1)δ, sε) in state 1 and remains in this state when it leaves(mδ, (s + 1)ε),
βp4δ—the probability that the particle leaves((m+ 1)δ, sε) in state 4 and changes to state
1 when it leaves the node(mδ, (s + 1)ε). Once the initial conditions are given, (1) has a
unique solution.

The parametersε andδ are related by the requirement that in the diffusive continuum
limit δ/(2ε) → D asδ → 0 whereD is the diffusion constant. Hence, we have, for small
δ,

δ2

2ε
= D + O(δ) or ε = δ2

2D
+ O(δ3). (3)

To express (1) in matrix form, consider the shift operatorsE±1
x andEt such that

E±1
x pi(mδ, sε) = pi((m± 1)δ, sε) Etpi(mδ, sε) = pi(mδ, (s + 1)ε). (4)

Then equation (1) becomes

Etp(mδ, sε) = Exp(mδ, sε) (5)

wherep(mδ, sε) = [p1(mδ, sε), . . . , p4(mδ, sε)]T and

Ex =


αE−1

x 0 0 βEx
βE−1

x αEx 0 0
0 βEx αE−1

x 0
0 0 βE−1

x αEx

 . (6)

Now consider the change of variables

z̃1 = p1 + p2 + p3 + p4 z̃3 = p1 − p3

z̃2 = (p1 + p3)− (p2 + p4) z̃4 = p2 − p4.
(7)

In matrix notation, we have

z̃ = [z̃1, . . . , z̃4]T = Rp (8)
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with

R =


1 1 1 1
1 −1 1 −1
1 0 −1 0
0 1 0 −1

 . (9)

From table 1,̃z1(mδ, sε)δ is the probability that a particle leaves(mδ, sε) in either direction
and in any spin state,̃z2δ is the difference in the probabilites that a particle leaves(mδ, sε)

to the right and the left, and̃z3δ = (+1)p1δ + (−1)p3δ is the expected spin of a particle
leaving (mδ, sε) to the right. Similarly, z̃4δ is the expected spin of a particle leaving
(mδ, sε) to the left.

It is worth noting at this point that the change of variables (7) does not change the object
we are describing (i.e. ensembles of random walkers obeying the master equation (1)). The
new variables are not probabilities, but they are expectations of simple ‘counting’ variables
over well-defined ensembles of walks. As such they represent observable features of the
ensembles of walks.

In the new variables equation (5) becomes

Et z̃(mδ, sε) = RExR−1z̃(mδ, sε). (10)

As in [17], the variables may be scaled with a change of variables fromz̃ to z =
(z1, z2, z3, z4)

T where we choose a normalization appropriate to the continuum limit; that
is,

zi = z̃i zi+2 = 2s/2z̃i+2 (i = 1, 2). (11)

Then (10) becomes

Etz(mδ, sε) = E ′
xz(mδ, sε) (12)

where

E ′
x =

[
I2 0
0

√
2I2

]
RExR−1 =

[
B11 0
0 B22

]
(13)

B11 = 1

2

[
(Ex + E−1

x ) (E−1
x − Ex)

(β − α)(E−1
x − Ex) (α − β)(E−1

x + Ex)

]
B22 = 1√

2

[
2αE−1

x −2βEx
2βE−1

x 2αEx

] (14)

andI2 is the(2 × 2) identity matrix.
As in the free-particle case discussed in [17], the shift matrixE ′

x is block diagonal so
that we may analyse(z1, z2) and (z3, z4) separately. However, before doing so we put in
a potential field throughα. Here we imagine the lattice walkers choose their next state
according to a canonical ensemble in which a smooth bounded potentialv(x)ε acts like an
energy. That is, suppose

α = e−v(x)ε

e−v(x)ε + ev(x)ε
(15)

so that

α = 1
2(1 − v(x)ε)+ O(ε2) β = 1

2(1 + v(x)ε)+ O(ε2). (16)

For smallδ, bothα andβ are equal to1
2 + O(δ2).

We wish to approximate the solution of (12) for smallδ by solutions of partial differential
equations and we start with the first block of equations in (12). Suppose we are interested
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in (x, t) in a neighbourhood of a fixed point(X, T ) in spacetime. Givenδ andε, we select
the node(mδ, sε) as(Mδ, Sε) such that

Mδ 6 X 6 (M + 1)δ Sε 6 T < (S + 1)ε. (17)

We start withE±1
x zi(Mδ, Sε) = zi(Mδ ± δ, Sε) and expandzi(Mδ ± δ, Sε) in a power

series inδ to obtain

E±1
x = 1 ± δ

∂

∂x
+ 1

2
δ2 ∂

2

∂x2
+ O(δ3). (18)

Similarly, from the expansion ofEtzi(Mδ, Sε) = zi(Mδ, Sε + ε), we have

Et = 1 + ε
∂

∂t
+ O(ε2). (19)

We apply these expansions to the first block of equations in (12); namely,Et [z1, z2]T =
B11[z1, z2]T . Substituting the expansions into this equation and using (16), we have

∂

∂t
z1(Mδ, Sε) = D

∂2

∂x2
z1(Mδ, Sε)+ O(δ) z2 = O(δ). (20)

Thus,zi(Mδ, Sε) = z∗
i (Mδ, Sε)+O(δ) wherez∗

1(x, t) is a solution of the diffusion equation
(z∗

1)t = D(z∗
1)xx andz∗

2(x, t) = 0. This is expected on physical grounds because the potential
only affects the local mean free path and does not favour either direction. Since the mean
free path is zero in the continuum limit thez1 does not contain the (finite) potential in this
limit.

The second block of equations in (12) to consider isEt8(mδ, sε) = B228(mδ, sε)

where8 = [z3, z4]T . As discussed in detail in [17], we cannot work directly with this
equation if we wish to approximate8 for small δ by a continuous function. To see
this, we have, from (14) and (18),B22 = V + O(δ) whereV is defined in (24). Thus,
Et8(mδ, sε) = 8(mδ, (s + 1)ε) = V8(mδ, sε) + O(δ) and, in k steps on the lattice,
8(mδ, (s+k)ε) = V k8(mδ, sε)+O(δ). SinceV is a rotation matrix with angle of rotation
π/4, V 8 = I2. Hence,8(mδ, (s + 8l)ε) − 8(mδ, sε) = O(δ) (l = 0, 1, . . .) for any s so
that8 can be approximated by a continuous function for smallδ provided we consider8
defined on the time stepss + 8l. In the sequel, we restrict8 in most cases to the time
stepss = 8l and we indicate later what changes occur if we restrict8 to s = k + 8l
(k = 1, . . . ,7). That is, givenδ, ε and a fixed point(X, T ), we select the node(Mδ, Sε)
on the lattice where

Mδ 6 X 6 (M + 1)δ Sε 6 T < (S + 8)ε S = 0 mod 8 (21)

and approximate8 by a solution of a partial differential equation. ApplyingEt to
Et8 = B228 seven times, we obtain

E8
t [z3(Mδ, Sε), z4(Mδ, Sε)]

T = B8
22[z3(Mδ, Sε), z4(Mδ, Sε)]

T (22)

as the equations we use to approximatezi . RewritingB22 as an expansion in powers ofδ
we obtain

B22 = V + Bδ
∂

∂x
+ 1

2
δ2

(
V
∂2

∂x2
− v(x)

D
V T

)
+ O(δ3) (23)

whereB22 and its powers are expressed in terms of the matrices

V = 1√
2

[
1 −1
1 1

]
B = − 1√

2

[
1 1
1 −1

]
C =

[
0 −1
1 0

]
I2 =

[
1 0
0 1

]
.

(24)
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The following results can be readily established:

B2
22 = C +

√
2Bδ

∂

∂x
+

(√
2V

∂2

∂x2
− I2

v(x)

D

)
δ2 + O(δ3) (25)

B4
22 = −I2 + 2C

(
∂2

∂x2
− v(x)

D

)
δ2 + O(δ3) (26)

B8
22 = I2 − 4C

(
∂2

∂x2
− v(x)

D

)
δ2 + O(δ3). (27)

Substituting the expansions (27) andE8
t = 1+8ε ∂

∂t
+O(ε2) from (19) into equation (22),

we have
∂

∂t

[
z3

z4

]
=

[
0 D ∂2

∂x2 − v

−D ∂2

∂x2 + v 0

] [
z3

z4

]
+ O(δ) (28)

which can be expressed in the complex form

i
∂

∂t
(z4 + iz3) =

(
−D ∂2

∂x2
+ v

)
(z4 + iz3)+ O(δ) (29)

where the functions are evaluated at the point(Mδ, Sε) on the lattice. Thus,z4(Mδ, Sε)+
iz3(Mδ, Sε) = z∗

4(Mδ, Sε)+ iz∗
3(Mδ, Sε)+O(δ) whereψ = z∗

4(x, t)+ iz∗
3(x, t) is a solution

of the Schr̈odinger equation iψt = −Dψxx + v(x)ψ for a particle in a scalar potentialv(x).
However, in this context the equations apply to ensembles or Brownian particles on a
discrete lattice with external fieldv(x). Finally, we note that if we had used the equations
on the time stepss = k+8l (k = 1, . . . ,7) (l = 0, 1, . . .) then the equation we obtain is (28)
multiplied byV k, and hence,V k[z3, z4]T is a solution of (28); consequently, [i, 1]V k[z3, z4]T

is a solution of Schr̈odinger’s equation. In conclusion, on the lattice we have

p = r1z
∗
1 + 1

2s/2
(r3z

∗
3 + r4z

∗
4)+ O(δ) (s = 0 mod 8) (30)

whereri is the ith column vector ofR−1. z∗
1 is a solution of the diffusion equation and

z∗
4 + iz∗

3 is a solution of the Schrödinger equation.
Before leaving the(1 + 1)-dimensional case, a qualitative feature of the calculation

which we emphasize is the following. Although we started out with classical dissipative
dynamics described by (1) and (20), equation (28) describes a non-dissipative feature of
the ensemble of walks. The representation (29) of equations (28) is not a formal analytic
continuation of either (20) or (28), it is an expression of (28) in a form which is recognizable
as Schr̈odinger’s equation. The wave aspects of Schrödinger’s equation are already intrinsic
to (28) and consequently to the ensemble of particles being described.

2. Walks in (2+ 1) dimensions

We now proceed with a generalization of the above model to(2+1) dimensions as follows.
Assume that particles hop along diagonals on a square lattice with spacingδ in both
directions. If the space axes are labelledx and y then at each time step every particle
moves a distance±δ along both axes. The projection of a trajectory onto either axis will
then be a simple binary random walk of the type examined in the first section. We then
count trajectories on projection in the same manner that we did for the(1 + 1) case. That
is, each projected walk will be labelled using four states: two spin and two direction states.

The total number of states in the system will then be 16, four for each direction. As in
the previous case we letpµν(mδ, nδ, sε)δ2 be the probability that a particle leaves(mδ, nδ)
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at timesε in state(µ, ν) (µ, ν = 1, . . . ,4). Here,µ denotes the state of the projection on
thex-axis andν denotes the state of the projection on they-axis. The difference equations
analogous to (1) are

p11(mδ, nδ, (s + 1)ε) = α2p11((m− 1)δ, (n− 1)δ, sε)

+αβp41((m+ 1)δ, (n− 1)δ, sε)

+βαp14((m− 1)δ, (n+ 1)δ, sε)+ β2p44((m+ 1)δ, (n+ 1)δ, sε)

...

p44(mδ, nδ, (s + 1)ε) = α2p44((m+ 1)δ, (n+ 1)δ, sε)

+αβp34((m− 1)δ, (n+ 1)δ, sε)

+βαp43((m+ 1)δ, (n− 1)δ, sε)+ β2p33((n− 1)δ, (m− 1)δ, sε).

(31)

If we arrange these difference equations in rows of four so that within blocks only the
x-label µ changes, the shift matrix then has a simple structure. As in (4), we define
E±1
x p(mδ, nδ, sε) = p(mδ ± δ, nδ, sε), E±1

y p(mδ, nδ, sε) = p(mδ, nδ ± δ, sε), and
Etp(mδ, nδ, sε) = p(mδ, nδ, sε + ε). We have

Etp(mδ, nδ, sε) = Ep(mδ, nδ, sε) (32)

wherep = [p11, p21, . . . , p44]T ,

E =


αE−1

y Ex 0 0 βEyEx
βE−1

y Ex αEyEx 0 0
0 βEyEx αE−1

y Ex 0
0 0 βE−1

y Ex αEyEx

 (33)

andEx is the(4×4) matrix defined by (6).E can be expressed in a compact form using the
outer (direct) product of two matrices. LetA = (aij ), B = (bij ), C andD be any(n× n)

matrices. Then we denote the outer product ofA andB asA ⊗ B and define it as the
(n2 × n2) matrix where the(i, j) block-entry is the(n × n) matrix aijB. The property of
outer products that we use later is(A⊗ B)(C ⊗D) = (AC)⊗ (BD). With this definition,
E = Ey ⊗ Ex whereEy is defined by replacingx by y in Ex .

In the one-dimensional case we changed variables using the matrixR of equation (4).
Here the equivalent change of variables is accomplished by the matrixR⊗R. To simplify
the set of equations, we change variables fromp to w wherep = (R−1 ⊗R−1)w to obtain

Etw = (R ⊗ R)(Ey ⊗ Ex)(R−1 ⊗ R−1)w. (34)

We have used the property that(R ⊗R)(R−1 ⊗R−1) = I . Using the property of the outer
product, this equation becomes

Etw = (REyR−1)⊗ (RExR−1)w. (35)

With the aid of a computer algebra system, we perform the following change of variables
in order to simplify (35). LetPi,j be the(16× 16) permutation matrix which is obtained
by interchanging thei andj rows of I16 (Ik is the(k × k) identity matrix). In addition, let

Q =
[
I12 0
0 S

]
S =


1 −1 1 1
1 1 −1 1

−1 1 1 1
1 1 1 −1

 (36)

and letw = P z̃ whereP = P11,13P12,14P3,5P4,6Q. The equations now have the form

Et z̃ = P−1(REyR−1)⊗ (RExR−1)P z̃ (37)
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in which the matrix has a block-diagonal structure where the blocks on the diagonal are
(4× 4) matrices. The fourth block is also block-diagonal where the sub-blocks are(2× 2)
matrices. Furthermore, we scale the variables in a way similar to the one-dimensional case
by the change of variables:

zi = z̃i (i = 1, . . . ,4)

zi = 2s/2z̃i (i = 5, . . . ,12)

zi = 2s z̃i (i = 13, . . . ,16).

(38)

The final form of our equations is

Etz = Bz B = P−1(E ′
y ⊗ E ′

x)P (39)

where B = (Bij ) andBij are (4 × 4) matrices withBij = 0, i 6= j . In addition, E ′
x is

defined in (13) andE ′
y is obtained fromE ′

x by replacingx by y.
We start with the first(4 × 4) block of equations in (36),Et [z1, . . . , z4]T =

B11[z1, . . . , z4]T , and determine the asymptotic expansion for smallδ for (x, y, t) in a
neighbourhood of a fixed point(X, Y, T ) where the node(Mδ,Nδ, Sε) is defined, as in
(17), by

Mδ 6 X < (M + 1)δ Mδ 6 Y < (M + 1)δ Sε 6 T < (S + 1)ε. (40)

We now proceed to expandB11 in powers ofδ. To do this, we determineE±1
x as in (18)

andE±1
y which follows from (18) withx replaced byy. We can show that forB11 = (bij )

b11 = 1 + 1
2∇2δ2 + O(δ3) bij = O(δ) ((i, j) 6= (1, 1)). (41)

Substituting, we havezi = O(δ) (i = 2, 3, 4) and

∂

∂t
z1 = D∇2z1 + O(δ) ∇2 = ∂2

∂x2
+ ∂2

∂y2
. (42)

Thus, zi(Mδ,Nδ, Sε) = z∗
i (Mδ,Nδ, Sε) + O(δ) where z∗

1(x, y, t) is a solution of the
diffusion equation∂z∗

1/∂t = D∇2z∗
1 andz∗

i (x, y, t) = 0 (i = 2, 3, 4).
For the remaining cases, we consider, for the same reason as in (25),

Mδ 6 X < (M + 1)δ Mδ 6 Y < (M + 1)δ

Sε 6 T < (S + 8)ε S = 0 mod 8.
(43)

ForEt [z5, . . . , z8]T = B22[z5, . . . , z8]T we considerE8
t [z5, . . . , z8]T = B8

22[z5, . . . , z8]T and
expand as before. LetB8

22 = (Mij ) whereMij are(2 × 2) matrix, then we have

M11 = I2 +
[ ∂2

∂y2
∂2

∂x2 − v
D

− ∂2

∂x2 + v
D

∂2

∂y2

]
4δ2 + O(δ3) Mij = O(δ) ((i, j) 6= (1, 1)).

(44)

Substituting, we havez7 = O(δ), z8 = O(δ) and

∂

∂t

[
z5

z6

]
=

[
D ∂2

∂y2 D ∂2

∂x2 − v

−D ∂2

∂x2 + v D ∂2

∂y2

] [
z5

z6

]
+ O(δ). (45)

In complex form,

i

(
∂

∂t
−D

∂2

∂y2

)
(z6 + iz5) =

(
−D ∂2

∂x2
+ v

)
(z6 + iz5)+ O(δ). (46)

Thus, zi(Mδ,Nδ, Sε) = z∗
i (Mδ,Nδ, Sε) + O(δ) wherez∗

7(x, y, t) = z∗
8(x, y, t) = 0, and

ψ = z∗
6(x, y, t)+ iz∗

5(x, y, t) is a solution of a ‘mixed’ equation iψt = iDψyy−Dψxx+vψ :
diffusive in y and Schr̈odinger-like inx.
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For the next case, we haveE8
t [z9, . . . , z12]T = B8

33[z9, . . . , z12]T and expand as before.
Let B8

33 = (cij ) and expand as a power series inδ to obtain

c11 = 1 + 4δ2 ∂
2

∂x2
+ O(δ3) c13 = 4δ2

(
∂2

∂y2
− v

D

)
+ O(δ3)

c31 = −c13 c33 = c11

(47)

and the remaining entriescij = O(δ). In conclusion,z10 = O(δ), z12 = O(δ) and

∂

∂t

[
z9

z11

]
=

[
D ∂2

∂x2 D ∂2

∂y2 − v

−D ∂2

∂y2 + v D ∂2

∂x2

] [
z9

z11

]
+ O(δ) (48)

which can be expressed in the complex form

i

(
∂

∂t
−D

∂2

∂x2

)
(z11 + iz9) =

(
−D ∂2

∂y2
+ v

)
(z11 + iz9)+ O(δ). (49)

Thus,zi(Mδ,Nδ, Sε) = z∗
i (Mδ,Nδ, Sε) + O(δ) wherez∗

10(x, y, t) = z∗
12(x, y, t) = 0 and

ψ = z∗
11(x, y, t)+iz∗

9(x, y, t) is a solution of the mixed equation iψt = iDψxx−Dψyy+vψ :
diffusive in x and Schr̈odinger-like iny.

In our last(4×4) block,we haveEt [z13, . . . , z16]T = B44[z13, . . . , z16]T and we consider
E8
t [z13, . . . , z16]T = B8

44[z13, . . . , z16]T . Let B8
44 = (dij ) and the power series inδ is

d12 = −d21 = 4δ2D

(
∂2

∂x2
− ∂2

∂y2

)
+ O(δ3)

d34 = −d43 = 4δ2
(
−∇2 + v

D

)
+ O(δ3)

(50)

where the remaining entries aredij = O(δ). In conclusion,

∂

∂t

[
z13

z14

]
=

[
0 D( ∂

2

∂x2 − ∂2

∂y2 )

−D( ∂2

∂x2 − ∂2

∂y2 ) 0

] [
z13

z14

]
+ O(δ) (51)

∂

∂t

[
z15

z16

]
=

[
0 −D∇2 + 2v

D∇2 − 2v 0

] [
z15

z16

]
+ O(δ). (52)

In complex form, these equations are

i
∂

∂t
(z13 + iz14) =

(
−D ∂2

∂y2
+D

∂2

∂x2

)
(z13 + iz14)+ O(δ) (53)

i
∂

∂t
(z15 + iz16) = (−D∇2 + 2v)(z15 + iz16)+ O(δ). (54)

Thus, zi(Mδ,Nδ, Sε) = z∗
i (Mδ,Nδ, Sε) + O(δ) whereψ = z∗

15(x, y, t) + iz∗
16(x, y, t) is

a solution of Schr̈odinger’s equation iψt = (−D∇2 + 2v)ψ ; whereas,ψ = z∗
13(x, y, t) +

iz∗
14(x, y, t) is a solution of the mixed equation iψt = −Dψyy +Dψxx : Schr̈odinger-like in

y and conjugate Schrödinger-like inx.
In conclusion, we have on the lattice

p =
4∑
i=1

riz
∗
i + 1

2s/2

12∑
i=5

riz
∗
i + 1

2s

16∑
i=13

riz
∗
i + O(δ) (s = 0 mod 8) (55)

where ri is the ith column vector of(R−1 ⊗ R−1)P . z∗
1 is a solution of the diffusion

equation;z∗
13 + iz∗

14 is a solution of the Schrödinger equation;z∗
6 + iz∗

5 and z∗
11 + iz∗

9 are
solutions of mixed equations, diffusive in one variable and Schrödinger-like in the other
variable; andz∗

15 + iz∗
16 is a solution of a mixed equation that is Schrödinger-like in one

variable and conjugate Schrödinger-like in the other variable; the remainingz∗
i = 0.
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3. Summary

The above calculations described a real physical probabilistic model. On the lattice the
space of paths and the metric are both well known. The solutions of the discrete analogue
of Schr̈odinger’s equation are obtained by projection from the full solutions of the system.
There is no formal analytic continuation involved in extracting these solutions; they are
observable features of the ensembles of particles involved.

The full system is a microscopic model of quantum mechanics only in a formal sense,
since the objects being described by solutions of Schrödinger’s equation are ensembles of
classical particles, and not the single ‘particles’ of nature. It is interesting to note, however,
that if the Bohr–Einstein debate was about the above system, both arguments would contain
a large element of truth. For example, in the(1 + 1)-dimensional system, Bohr would be
correct in asserting that theψ form a complete description. In this model they do form a
complete description of asubspaceof the full system. Furthermore, construction of the full
system from the subspace is impossible because the information lost in the projection (z1

andz2) cannot be extracted fromψ .
On the other hand, Einstein’s intuition that Schrödinger’s equation is an incomplete

description of the entirephysical system would, in this case, be correct and to the point.
From the above derivation we know that the information which is lost in the projection
which reveals Schrödinger’s equation, is crucial for the understanding of the context of
the equation. For example, without all four componentszi in equation (12), the resulting
Schr̈odinger equation (29) could be describing simple aspects of random walks, or it might
just be a formal analytic continuation of a classical diffusive system, or it could be describing
the particles of nature. Only the information, lost on projection, could distinguish these
alternatives.
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